Bringing together the users of Dassault Systèmes PLM solutions - CATIA, ENOVIA, DELMIA, SIMULIA® and 3DVIA®

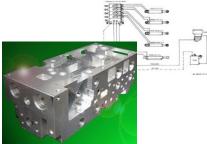
Brian Prasad, Parker Hannifin/Parker Aerospace Nikhil Shintre, Geometric Limited Jeff Rogers, Parker Hannifin Anurag Jain, Geometric Limited

COE 2010 ANNUAL PLM CONFERENCE A N D T E C H N I F A I R April 18-21, 2010 • The Rio All-Suite Hotel • Las Vegas, Nevada

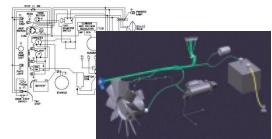
Founding Partne

Introduction

- Today's Product Development Environment
 - Multidisciplinary control systems
 - Collaboration across organizations
 - Shrinking timeline & costs


Agenda of Session

- Development of Control System
 - Challenges of packaging
 - Expectations from integrated packaging
- Proposed architecture on CATIA-V5
 - Description of original & dummy problem
 - Use of PowerCopy with OGS
 - Enhancing PCs with KW functions & Automation
- Implementation results & Conclusion



Packaging of Control System

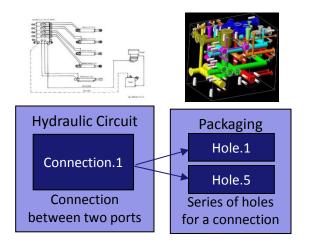
- New products involve multiple systems Mechanical, Electronics, Hydraulics
- System design defines control flow which is realized by physical design aka Packaging
- Packaging constraints Operating Clearances, Minimum wall thickness, etc.
- Packaging is trial and error process
 - Engineers try different combinations
 - Must retain system integrity
 - Must meet constraints
- Change propagation is tricky
 - System & Packaging association
 - Small change upsets whole packaging

Fluid Control System

Wiring Harness

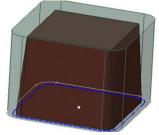
Expectation from Packaging System

Schematic



3D Envelope

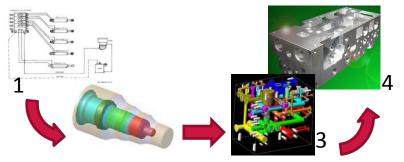
Ability to freely move the components


Full 3D Shape

- Manage representations as associative unit
- No hard positioning of components
- Minimal dependencies across components

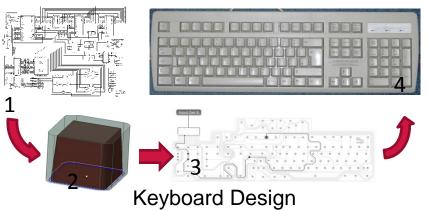
Manage multiple representations

- Lightweight for quick viewing
- Realistic shape in 3D solid
- Envelope for Operating clearances



Model with 3 representations

- System & packaging design correspondence
 - Correlate physical connections with a system connection
 - Retain integrity of system design, while breaking / merging physical connections
 - Allow change of components with minimal impact on connections


Problem Description

Fluid Control Design 1. Hydraulic Circuit, 2. Creation of components & connections 3. Positioning of components & connections, 4. Block Manifold

Overview

- Original Problem Fluid Control System
- Dummy Problem Design of keyboard

1. Electronic System Design, 2. Creation of keys & connections 3. Positioning keys & connections, 4. Design of keyboard body

Dummy Problem - Keyboard Design

- Electronic system design
- Creation of keys & connections
- Packaging
 - Placement of components (i.e. key)
 - Routing of connections
- Design of keyboard body & enclosures

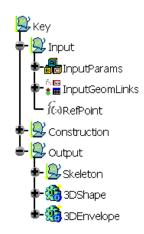
Design Context

•

Part OR Product Environment

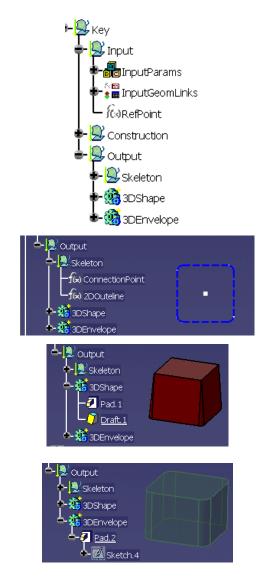
- Both part & product can meet requirement
- Part environment is preferred
 - Eases break / merge connections in routing
 - Allows assembling of all bodies for enclosure design
- In Part environment, Key & Connection are represented by templates

UDF OR PowerCopy Template

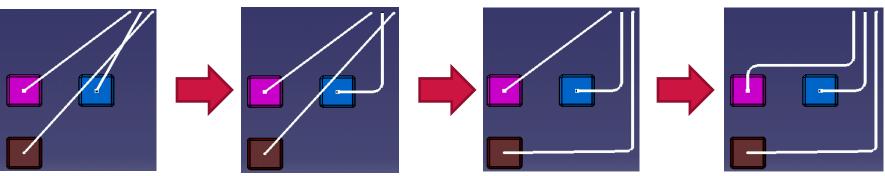

- UDF creates single unit for all three representations
- PowerCopy (PC) is chosen over UDF
 - Allows to activate / deactivate 3 different representations
 - No special license requirements
- PC will replicate all template entities, when instantiated. This must be managed properly.

Managing PowerCopy

- Content of PowerCopy
 - Construction geometries
 - Output Skeleton
 - Output Full 3D Shape
 - Output Envelope
 - Knowledgeware entities
- PowerCopy MUST be managed in single container for
 - Deleting / Replacing
 - Manipulating as single unit
- Only 'Ordered Geometrical Set (OGS)' can contain all types

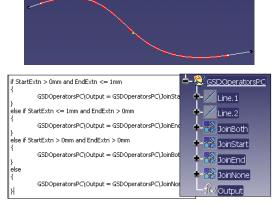

	GS	OGS	Body
Geometrical Set (GS)	Х		Х
Ordered Geometrical Set (OGS)		Х	Х
Body		Х	
Knowledgeware Entities		V	
(Parameters, Relations)		X	
Solid features			Х
Point, Wire / Sketch, Surface	Х	Х	Х
Volumes	Х	Х	

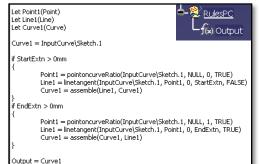
Structure of Key PowerCopy


- Inputs
 - Dimension parameters and control flags
 - KW Parameters linked to positioning point
- Construction
 - Support planes, Reference lines, etc
 - Sketch forming the shape of key
- Output
 - Skeleton Connection point & Lightweight outline
 - 3D Shape Key shape with pad / draft
 - 3D Envelope Sketch offset and pad

Structure of Connection PowerCopy

- Inputs
 - Dimension parameters and control flags
 - KW Parameters linked to inputs Start / End and other points on path
- Construction
 - Polyline passing through the points
 - Profile sketch controlled through parameters
- Output
 - Skeleton Polyline representing connection path
 - 3D Shape Sweep using the profile and polyline
 - 3D Envelope Sweep with clearance to maintain minimum gap


COE 2010 ANNUAL PLM CONFERENCE AND TECHNIFAIR April 18-21, 2010 • The Rio All-Suite Hotel • Las Vegas, Nevada


Demo - Key / Connection Manipulation

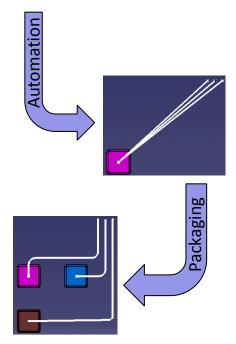
CATIA V5 - [Copy					
<u>Start File E</u> dit	View Ins	ert <u>T</u> ools	Window	Help	
PartBody					
Point.2					
-бх -бү -бг					
- @ γ					Γ
L∰z					
Point.8					Ĺ
- Фх - Фу - Фу					
-⊜Y					
🕈 🍯 Point.9					
🕈 📲 Point.10					
🔶 - Point.13					
Point.14					
Key.1					
1. Input					
Construction					
A Soutput					
Key.2					
🕂 🏝 Input					
Construction					
- Output					
Connection.1					
Point.11					
Polyline.1					
Connection.2					
Point.12					
-@)× -@)γ -@)z					
- 🗗 Y					
L D Z					
Polyline.3					
Key.3					
🕈 🛃 Input					
+ Dutput					
Connection.3					
+ Point.17					
Point.18					

Scalability of PowerCopy

Description	Size of 5 PC instances	Time to update
GSD Approach	111 kB	2.29 sec
Rule Approach	61 kB	0.81 sec

Scalability Issues

- Increasing no of PCs increases the file size and degrades the performance.
- Users complain slow system response, which affects speed of work.

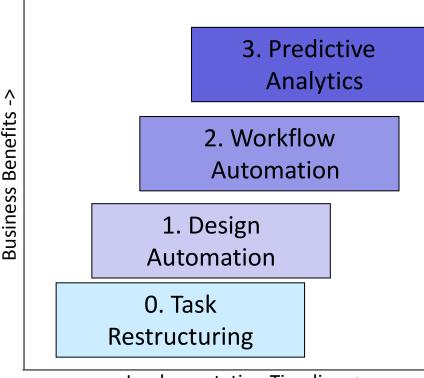

Various Solutions

- Reduce features in PowerCopy
 - Reduce grouping of different configurations into single PC
 - Automation utility to remove extra flexibility in the PCs after instantiation
 - Use of rules instead of Generative Shape Design (GSD) features

Further Enhancements

Name	Start	End	Size
Connection.1	Key.1	Bus.1	2
Connection.2	Key.2	Bus.1	3
Connection.3	Key.3	Bus.1	2

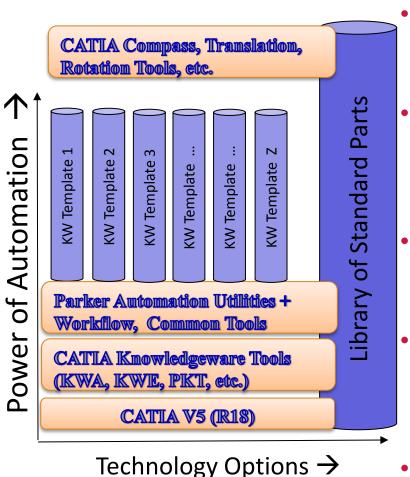
- Startup Utility
 - Key / Connection info loaded from MS-Excel
 - All components positioned at origin with appropriate connections
- Edit Support
 - Edit key instances (not available with PC)
 - Insert points in connections to create chain of connections
- Packaging Validation
 - Check intersection between 3D Solids and Envelope
 - Violations provide 'immersive feedback'


Implementation & Results

Implementation Plan

- Duration 12-14 months
- Incremental implementation across multiple deployments
- Each phase signed-off by users, after a mockup / presentation.

Results


- Packaging effort reduced by ~50%
- Lead time reduced by ~40%
- Eases modifications & reuse due to better & uniform structure
- Rework due to clearance violations reduced significantly

Implementation Timeline ->

Conclusion

- Generic architecture, extendable to a multidisciplinary control system
- OGS allowed managing a complex PC with various type of entities and multiple output as single unit
- Scalability issues can be tackled by optimizing no of features & use of rules
- Synergy of KW Templates with Automation Utilities enhances power of automation
- Incremental implementation approach achieved results with lower risk

Questions?

Brian Prasad

Leader, Knowledge Engineering Team Parker Aerospace, Control Systems Division Irvine, California bprasad@parker.com

Nikhil Shintre

Technical Expert Geometric Limited Pune, India nikhil.shintre@geometricglobal.com